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Abstract. Current approaches for the processing and analysis of EEG signals 

consist mainly of three phases: preprocessing, feature extraction, and classifica-

tion. The analysis of EEG signals is through different domains: time, frequency, 

or time-frequency; the former is the most common, while the latter shows com-

petitive results, implementing different techniques with several advantages in 

analysis. This paper aims to present a general description of works and method-

ologies of EEG signal analysis in time-frequency, using Short Time Fourier 

Transform (STFT) as a representation or a spectrogram to analyze EEG signals. 
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1 Introduction 

The human brain is one of the most complex organs in the human body. It is considered 

the center of the human nervous system and controls different organs and functions, 

such as the pumping of the heart, the secretion of glands, breathing, and internal tem-

perature.  Cells called neurons are the basic units of the brain, which send electrical 

signals to control the human body and can be measured using Electroencephalography 

(EEG).   

Electroencephalography measures the electrical activity of the brain by recording 

via electrodes placed either on the scalp or on the cortex. These time-varying records 

produce potential differences because of the electrical cerebral activity.  The signal 

generated by this electrical activity is a complex random signal and is non-stationary 

[1]. Signals are normally composed of four brainwave groups: Delta, Theta, Alpha, and 

Beta [2]. Each band has different frequencies and amplitudes related to activities in the 

human body.   

Currently, the analysis of EEG signals is very important due to the information ob-

tained from the signal, which can help physicians to recognize brain issues such as 

epilepsy, Alzheimer’s, seizure disorder, attention deficit disorder, anxiety disorder, fe-

tal alcohol syndrome, and autism, among others [3,4,5,6,7]. The collected data also 

allows the brain to interact with machines or devices without physical contact, a process 

commonly called Brain Computer-Interfaces (BCI), which is the basis for  different 
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applications, e.g., assistive technologies for those with severe motor disabilities [8,9]. 

Finally, EEG signals are proposed as an alternative to biometric applications, as they 

are unique and cannot be forged [7]. 

There are different approaches to analyzing EEG with two of the most common be-

ing time and frequency domain. However, this analysis is not unique since it depends 

of the application; besides, considering that non-stationary signals are considered and 

different artifacts are added, classifying mental stages is not a trivial problem with op-

portunity to do research in this area. Another problem with a big challenge is  dimen-

sionality, since the information obtained for analysis, does not usually use only a few 

channels of acquisition[10]. Nevertheless, not all the information obtained is useful; it 

could present redundant data and increase computational time [3]. Feature extraction 

and selection can reduce the data dimension, in addition to showing relevant patterns 

of EEG signals associated with the brain activity, which may reflect good performance 

in classification [11,12], showing other opportunity area to research. 

 This paper analyzes various techniques applied for processing EEG signals, show-

ing their characteristics mainly spectrograms-based methods. The outline of this paper 

is as follows: The phases of EEG analysis are discussed in the following section. An 

overview of reviewed works is presented in the Discussion section. Finally, conclusions 

are stated in the last section.  

2 EEG Signal Analysis Based on Spectrograms 

EEG signal analysis is commonly based on three modules or phases: Artifact removal 

or preprocessing, Feature Extraction, and Classification, as shown in Figure 1. The first 

phase is preprocessing, which cleans the signal of artifacts stored during acquisition; 

the next phase, feature extraction, retrieves the relevant features from a previously ob-

tained spectrogram when SSTF is applied to the clean signal; finally, in the last phase, 

features are provided to classifiers to construct a model for the analysis of future cases.  

 

Fig. 1.  Phases of EEG Signal Analysis. 

2.1 Preprocessing 

The preprocessing phase is the first step, which has two objectives: remove artifacts 

and filter data such as blinking, heartbeats, and other effects [4,13]. These can be im-

plemented in the acquisition (phase) through hardware or by software-based tech-

niques. Some well-known techniques for preprocessing EEG signals are Common Spa-
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tial Patterns (CSP), Principle Component Analysis (PCA), Common Average Refer-

encing (CAR), Surface Laplacian(SL), Independent Component Analysis(ICA), Adap-

tive Filtering, Digital Filter, and others [4,14].  

The approaches based on CSP construct spatial filters that both maximize the vari-

ance of one task and minimize the variance of another [4]. CSP is a discriminative user-

specific filtering technique for enhancing the signal, which detects patterns within the 

EEG signals by incorporating the spatial information of the EEG. It uses covariance 

matrices as the basis and seek a discriminative subspace, such that the variance for one 

class is maximized and the variance of the other is minimized simultaneously [14].  

PCA converts a number of correlated variables into a set of values of uncorrelated var-

iables called principal components. 

The primary axis or the first principal component is calculated such that it accounts 

for the largest amount of variability in the data. Subsequent components are calculated 

and account for the direction of the remaining variability, but in decreasing order of the 

amount of variability in the data, representing the direction of the next largest variation. 

As the transformed data have most of the variation in the first components, the remain-

ing components can be ignored to decrease the dimensionality [14]; CAR removes the 

noise by subtracting the common activity from the position of interest to improve the 

Signal-to-Noise Ratio (SNR), which measures the EEG signal strength relative to back-

ground noise. SL is a method with the same objective as CAR: to improve SNR and 

allow it to view the EEG signal with a high spatial resolution [4,14]. The CAR method 

re-references the signal to a common average across all the neurosensors by subtracting 

the mean value of the signal in all electrodes from each sample. This mean represents 

an estimate of the activity at the reference site, and subtracting this average produces a 

de-referenced solution.  

Contrary to CAR, the Surface Laplacian method is derived at a specific electrode 

position by subtracting a combination of the signals from a set of electrodes surround-

ing the central electrode signal [5];  ICA is a statistical and computational method for 

revealing the hidden sources/components that underlie sets of random variables, such 

as EEG signals. ICA assumes that the unknown underlying sources are independent of 

each other and have been linearly combined to form a mixed signal. This returns the 

independent components when this independence assumption is correct [5]. Adaptive 

filtering can modify signal properties according to the specific characteristics of the 

EEG, an efficient method for solving the problem of signals and interferences with 

overlapping spectra [14]. Digital filters are commonly used in artifact processing, 

where filters are implemented as low-pass, high-pass, band-pass, and band stop; these 

need to select the appropriate frequency to filter noise and artifacts [4].  Table 1 shows 

different characteristics of the methods described in [4,14]; most of these methods focus 

on temporal (CSP, CAR, PCA, SL, ICA) and spatial (Fourier Analysis, Autoregressive) 

filters. One important difference between filters in the response during online analysis 

is the time, as spatial filtering is better than temporal filtering with regard to time [4].  

These different methods depend on the application, data dimension, and technology 

used in acquisition.  
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Table 1. Characteristics of preprocessing methods. 

Method Characteristics 

CAR Improves SNR and outperforms all reference methods; incomplete coverage causes 

mistakes. 

ICA Computationally efficient and high performing for large data sizes; cannot be applied 

to some cases and requires more calculations for decomposition. 

SL Robust against artifacts generated at regions uncovered by electrodes, sensitive to 

artifacts and spline patterns. 

PCA Reduces dimension and works better than ICA. 

CSP Processes correctly motor imagery data and needs multiple electrodes (>64) 

Adaptive Filter Works well for signals with overlapping spectra and needs two signals and one refer-

ence signal. 

Digital Filter Easily removes noise, requires multiple frequencies. 

2.2 Feature Extraction and Classification 

The second phase in EEG signal analysis is feature extraction, where features of the 

signal are obtained using different signal processing techniques, such as Fast Fourier 

Transform (FFT), Principal Component Analysis (PCA), Wavelet Transformations 

(WT), Auto Regressive (AR), and others [4]. Analysis in time or frequency domain 

offers only time/frequency and amplitude information. The aforementioned techniques 

are commonly used in both domains. The Time-Frequency domain allows extracting 

information in the two domains simultaneously; EEG analysis is based on the time-

frequency image processing technique or spectrogram, a technique commonly used in 

Short Time Fourier Transform, which maps the signal into a two-dimensional function 

of frequency and time [2]. This section shows a review of the literature on extracting 

features of EEG signals using STFT. 

EEG signals in time-frequency domain are retrieved using the spectrogram, by ap-

plying a Short Time Fourier Transform to the signal. STFT is applied to partition the 

EEG signal into several segments of short-time signals by shifting the time window 

with some overlapping [15], a process called windowing. Depending on the time win-

dowing function w[n], a spectrogram is classified as a narrowband or wideband. If the 

time window is short, then its Fourier transform will be a wideband and a longer time 

returns a narrowband spectrogram [16]. The STFT general equation of a signal S is 

given by equation (1): 

 S(m,k)=∑ s(n+mN')w(n)e-j
2π

N
nkN-1

n=0 , (1) 

where  

k=[0:K] is the kth Fourier coefficient. 

K=N/2 is the frequency index corresponding to the Nyquist frequency. 

S(m,k) indicates the m-index time-frequency(frame) spectrogram. 

N=window segment length. 

N’=the shifting step of the time window. 
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w(n)=windowing method of an N - point sequence. 

N’ should be smaller than N in order to produce an overlap between the time windows. 

S depends on the window function; in practice, different window shapes are used, such 

as: Symmetric, Unimodal and Gaussian. 

The spectrogram contains a compromise between time resolution and frequency res-

olution: a large window provides less localization in time and more discrimination in 

frequency. The window obtains a time-slice of the signal, during which the spectral 

characteristics are nearly constant [16]; the obtained segments shift the time window 

with some overlapping. The spectrogram is defined as the magnitude of S(m,k), repre-

sented as A(m,k), as show in equation (2): 

 A(m,k)=
1

N
|S(m,k)|2.             (2) 

The spectrogram resolution can be enhanced modifying the length window; a long 

window provides a better frequency resolution, but poor time resolution. A short win-

dow, however, provides better time resolution but poor frequency resolution. A good 

visualization in the spectrogram depends the selection of an appropriate window length 

and overlapping. Fig. 2 shows a spectrogram of a signal, which is a time-varying spec-

tral representation of a signal. A spectrogram layout is usually as follows: the x-axis 

represents time, the y-axis represents frequency, and the third dimension is amplitude 

(spectral content) of a frequency-time pair, which is color coded. This three dimen-

sional data can also create a 3D plot, where the intensity is represented as height on the 

z-axis but a 2D chart provides a better understanding.   

 
(a) 

 
(b) 

Fig. 2.  a) EEG Signal with different amplitude along time, b) EEG signal Spectrogram. 
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2.2.1 Gray-Level Co-occurrence Matrix (GLCM) 

GLCM is a statistical method for examining texture, which considers the spatial rela-

tionships between pixels. Statistical measures can be extracted with this method, such 

as contrast, correlation, and energy, among others. Different authors use these features 

and others for classification; in an analysis done by Mustafa et al., [2] to classify mental 

stages through spectrograms, the authors extracted 80 statistical features for four orien-

tations of the matrix, reducing the features vector by applying PCA, and used K nearest 

neighbors(KNN) to classify the stages. In [18], a comparison was made of two classi-

fiers —Support Vector Machine and Artificial Neural Networks— following the same 

methodology, but the features vector had other statistical features, improving the accu-

racy for KNN (using Euclidian distance) in comparison with the Artificial Neural Net-

work (ANN). A BCI system [19] based on motor imagery acts in real-time using a 

single channel to classify the left- and right-hand motor imagery signals; these features 

are texture descriptors, employing a logistic regression classifier in offline mode.       

A methodology for detecting two different datasets —epileptic and sleep stages— is 

in [20]. By extracting statistical features of GLCM, these features were encoded using 

the Fisher Vector (FV) to be applied in an extreme machine learning for two different 

tests —in sleep stages and in epileptic stages. Another method implemented in [21] for 

classifying epileptic seizure electroencephalogram (EEG) signals uses three texture de-

scriptors to extract features: GLCM, the texture feature coding method (TFCM), and 

local binary patterns (LBP). GLCM and TFCM provided statistical features and LBP 

used the histogram; SVM was employed with LIBLINEAR in the classification with 

different accuracies, obtaining the highest accuracy with LBP and GLCM. Automatic 

person authentication [7] uses statistical features from spectrograms, but the energy 

obtained is used as a feature as well; a sum of the distance of the features is calculated 

to reduce dimension, and finally, ANN and SVM are applied.   

In [22], co-occurrences of histograms of oriented gradients (CoHOG) and 

Eig(Hess)-CoHOG features are extracted from the spectrogram; the features obtained 

are used in a nonnegative least squares classifier (NNLS), to classify alcoholism and 

control EEG signals.  

2.2.2 Frequency Bands 

An EEG Signal is commonly described in terms of brain activities; these are divided 

into frequency bands, which have a certain biological significance and different prop-

erties. Delta (δ) has the highest amplitude and the slowest wave; it is associated with 

deep sleep and waking states. Theta (θ) has an amplitude greater than 20 μV and a range 

of 4-7 Hz, and is linked with idling, creative inspiration, unconscious material, drows-

iness, and deep meditation. Alpha (α) has an amplitude of 30-50 μV and a range of 8-

13 Hz, it is usually associated with relaxation, concentration, and sometimes with at-

tention. Mu (µ), is found in the alpha wave and is regularly related to suppression, in-

dicating that the motor neurons are working. Beta (β) is linked to alertness, thinking, 

and active concentration, and falls in the range between 12 and 30 Hz. Lastly, Gamma 
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(γ) with a frequency greater than 30 Hz, is seen during short term memory matching of 

recognized objects, sounds, or tactile sensations [8]. 

The previous section showed different techniques for extracting features from a 

spectrogram based on GLCM. Some authors have obtained the spectrograms from a 

specific band or from several bands; however, features are extracted directly from 

GLCM. In this section, methods for extracting features based on spectrograms of dif-

ferent frequency bands are shown. A method based on these spectrograms [15] for com-

paring obtained components during writing and imagined writing is implemented; to 

obtain the spectrogram, the STFT is applied to EEG signals, and the resulting spectro-

grams are modified to have components only in the frequency domain. All components 

are compared employing a correlation, concluding that the writing and imagined writ-

ing features are the same. 

The classification of an epileptic seizure [23] employs the extraction of Frequency 

Cepstral Coefficients and stochastic relevance analyses on spectrograms of different 

rhythms. SVM is applied, obtaining competitive accuracies for different datasets. On 

the other hand, [24] extracts Malmquist-Takenaka coefficients from Spectrograms and 

statistical features, with the same objective. In this methodology, STFT is in discrete 

form, and the classification uses an Alternating Decision Tree (ADTree) classifier with 

three different datasets.  

Another work [25] identifies a motor imagery database of left- and right-hand move-

ments, applying multivariate empirical mode decomposition (MEMD) to generate mul-

tiple intrinsic mode functions (IMFs) to the EEG recordings. STFT is applied to the 

most significant mode. Features such as peak and entropy of the magnitude spectrum 

are used for the KNN classifier. Another work that implements KNN is [26], using Kd-

Trees in this case; the features are the energy of the spectrograms in different frequency 

bands, obtaining a different accuracy and varying the number of features; the aim of 

this work is to detect drowsiness automatically.  

3 Discussion 

The reviewed literature in previous sections shows methods implemented for analyzing 

EEG signals based on spectrograms, using STFT as a representation in time-frequency, 

due to the competitive results compared with analyses based on time or frequency do-

main, as well as representations. This section shows relevant characteristics of the tech-

niques in EEG processing. Table 2 shows the analysis of different methodologies, with 

attributes such as authors (reference), type of dataset to classify (objective), a brief de-

scription of the data (information), (#) the number of classes to use, and finally, three 

columns (preprocessing, feature extraction, and classification) to identify the tech-

niques used in the analysis phases. 

3.1 EEG Analysis 

In section two, the steps to follow in the EEG analysis were presented. The first step 

removes artifacts and noise; a few experiments [19,23,25] apply low-pass and band-
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pass filters, which can be implemented easily, as the band frequencies are known. Most 

experiments do not apply this phase, although the datasets were acquired from the ex-

periments. As general information, the following was identified: the number of classes 

(column #) that predominate for the analysis are only two, employing a maximum of 

three classes. Regardless of the approaches for the data sets, the method used for the 

preprocessing stage is filtering, which is applied in few experiments.  

Table 2. Methods about EEG signals analysis based on spectrograms. 

Reference Objective Information # Prepro-

cessing 

Feature  

extraction 

Classification 

Mustafa et 

al. 2010. 

Image Classifi-

cation 

Proposed Dataset 3 - Statistical features 

and  PCA. 

KNN (70.83%). 

Mustafa et 

al. 2012. 

Brain balancing 

classification  

Proposed Dataset 3 - Statistical features 

and PCA. 

90% KNN Euclid-

ian distance) and 

87.5%  ANN. 

Duque, et 

al. 2014 

Epileptic sei-

zures.  

100 Signals, single 

channel, 5 da-

tasets, 173.61Hz, 

Bonn University. 

2 Low-pass Stochastic analysis 

and cepstrals coef-

ficients. 

95.78%-100%, 

SVM. 

Kovács, et 

al, 2014. 

Epileptic sei-

zures.  

100 Signals, sin-

gle channel, 5 da-

tasets, 173.61Hz, 

Bonn University. 

2 - Malmquist-

Takenaka coeffi-

cients and statisti-

cal features. 

96.7%, 98.36%, 

and 99.7%. alter-

nating decision 

tree 

Khairul, 

et al, 2015 

Imagery motor. 1 person, 2 chan-

nel, 128 Hz. 

2 Band-pass Threshold. KNN (90%) 

Kumar 

and 

Sharma, 

2015 

Epileptic sei-

zures.  

100 Signals, sin-

gle channel, 5 da-

tasets, 173.61Hz, 

Bonn University. 

2 - Energy and PCA. ANN(995%, 

99.33% and 

92.36%) 

Nieves 

and Ma-

nian, 

2016. 

Authentication. Easycap, 32 chan-

nels. C3,CZ,C4. 

Imagery move-

ments. 

2 - Energy and statisti-

cal features. Sum of 

distances. 

ANN(6-channels)-

98%. SVM(2-3, 

channels)-90%, 

96%. 

Alcin, et 

al, 2016 

Multiclass 

(sleep stages 

and Epileptic 

seizures) 

100 Signals, sin-

gle channel, 5 da-

tasets, 173.61Hz, 

Bonn University. 

Proposed dataset, 

100 Hz, 30s, 8 sub-

jects. 

2 - GLCM y VF. Extreme machine 

learning. 

95.17%,95.38% - 

sleep stages. 

96.40%-Epilepsy. 

Camacho, 

et al. 2016. 

Imagery motors 

in a BCI. 

1 channel, 400Hz, 

20 subjects.  

2 Band-pass GLCM. Statistical 

features. 

Linear regression, 

87.6%. 

Jalilifard, 

et al., 2016 

Drowsiness 10 subjects. 2 - Energy statistical 

features. Random 

Forest. 

88.57%-91% 

(KNN-Kd Trees) 

Bajaj, et 

al.,2016 

Alcoholism and 

mental control. 

120 files, 64 elec-

trodes, 256 Hz. 

2 - Gray scale, Co-

HOG and 

Eig(Hess)-CoHOG 

Statistics. 

91.67%, 91.67% 

and 95.83% 

(NNLS) 

Segür, et 

al., 2016 

Epileptic sei-

zures. 

100 Signals, sin-

gle channel, 5 da-

tasets, 173.61Hz, 

Bonn University. 

Proposed dataset, 

100 Hz, 30s, 8 sub-

jects. 

2 - GLCM, statistical 

features; LBP y 

TFCM. 

100%, SVM and 

LIBLINEAR. 

 

For the feature extraction, statistical values of the time-frequency representation are 

utilized; it was seen that feature selection methods were applied in only three experi-

ments; some authors implemented this stage through PCA [2,3,27] [3], sum of distances 
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[7], and random forest [26]. Finally, the classification was generally performed by 

KNN, SVM, and ANN; SVM was the best classifier in regard to accuracy. 

The methods described are focused on medical applications related to sleep, aspects 

of authentication, the detection of imaginary motor images, and others. Medical appli-

cations are aimed at the detection of brain abnormalities within the EEG signals, such 

as neurological disorders caused by epileptic seizures, and the effects of alcohol on the 

brain. In sleep analysis, experiments are performed for the detection of sleep states to 

identify problems of drowsiness. However, applications aimed at aspects of authenti-

cation, show results that can be competitive compared to other biometrics, demonstrat-

ing that the EEG signal has the sufficient properties to make it safe, unique, non-visible, 

and non-modifiable.  

Table 3. Features extracted from spectrograms. 

Reference Feature  

extraction method 

Features Obtained 

Mustafa et al. 

2010. 

Statistical features and 

PCA. 

Proposed features by Haralick and Soh: Autocorrelation, Contrast, Corre-

lation, Cluster prominence, Cluster shade, Dissimilarity, Energy, Entropy, 

Homogeneity, Maximum probability, Variance, Sum average, Sum vari-

ance, Sum entropy, Different variance, Different entropy, Information of 

correlation 1, Information of correlation 2, Inverse difference normalized, 

and Inverse difference moment normalized. 

Mustafa et al. 

2012. 

Statistical features and 

PCA. 

Proposed features by Haralick, Soh and Clausi: Autocorrelation, Contrast, 

Correlation, Cluster prominence, Cluster shade, Dissimilarity, Energy, 

Entropy, Homogeneity, Maximum probability, Variance, Sum average, 

Sum variance, Sum entropy, Different variance, Entropy difference, In-

formation of correlation 1, Information of correlation 2, Inverse difference 

normalized, and Inverse difference moment normalized. 

Duque, et al. 

2014 

Stochastic analysis and 

cepstral coefficients. 

Five Cepstral coefficients in frequency related to rhythms: alpha, beta, 

theta and delta.   

Kovács, et al, 

2014. 

Malmquist-Takenaka 

coefficients and statisti-

cal features. 

Features using the discrete STFT as from rational coefficients and five 

statistical values of the coefficients: Mean median, maximum, minimum, 

and standard deviation.  

Khairul, et al, 

2015 

Threshold. Peak and entropy of the magnitude spectrum.  

Kumar and 

Sharma, 2015 

Energy and PCA. Fractional energy for EEG segments. 

Nieves y Ma-

nian, 2016. 

Energy and statistical 

features. Sum of dis-

tances. 

Energy, mean, variance and skewness from spectrogram. 

Alcin, et al, 

2016 

GLCM y VF. Texture descriptors: Contrast, correlation, energy, and homogeneity.  

Camacho, et 

al. 2016. 

GLCM. Statistical fea-

tures. 

Texture descriptor: Correlation, energy, contrast, homogeneity, and dis-

similarity.  

Jalilifard, et 

al., 2016 

Energy statistical fea-

tures. Random Forest 

The mean value of power in time and standard deviation (SD) and Shanon 

entropy related to each time-segment were computed from the time-do-

main. 

Bajaj, et 

al.,2016 

Gray scale, CoHOG 

and Eig(Hess)-CoHOG 

Statistics. 

Features obtained from local texture: Co-occurrence of Oriented Gradient 

(CoHOG) and Eig(Hess). 

Segür, et al., 

2016 

GLCM, Statistical fea-

tures, LPB and TFCM. 

Texture descriptors: Contrast, correlation, energy, and homogeneity.  

 

From the different, it was noted that for the analysis of epilepsy diseases, there is a 

set of data that different authors [3,20,23,24] employ, for example use a dataset created 

by the University of Bonn with five different subsets (A-E), with 100 single channel 
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signals, a duration of 26.3 seconds and a sampling frequency of 173.61 Hz. This data-

base contains high quality information (number of studies, time and number of sei-

zures), which were validated by experts. Table 2 shows four works where this dataset 

was used; although only one implemented the preprocessing stage [23] and the accu-

racy obtained was between 95.78% and 100%. 

3.2 STFT and Features 

Different objectives are proposed in the analyzed works, such as classification of motor 

images, the detection of imagined words, and others; nevertheless, they do not show 

execution time, which could be due to the real-time application execution not being 

required. STFT implementation is fast, but resolution depends on the window selected. 

For the purposes of the experiments in the literature, the resolution obtained with STFT 

is enough,  implying less computational work and less execution time. However, it was 

shown in [2,4,5] that dimensionality is a problem to be solved; experiments where PCA 

was used do not report execution time and [22] do not apply reduction of characteristics, 

although they do note that it is necessary to reduce the vectors, as they have thousands 

of values.  

All works use different features, most of them based on texture; some works extract 

features from GLCM applied to spectrograms; although the features are similar, chang-

ing some of these affect accuracy. Table 3 shows features extracted from spectrograms 

by the reviewed analysis; the first column corresponds to the authors, the second shows 

the methods implemented for extraction, and the last presents the features obtained.  

These works generally extract features from texture or from statistics  based on spec-

trograms, while others use energy as their main feature and employ different tech-

niques, such as LBP, TFCM, CoHOG, and Cepstral coefficients, among others. Differ-

ent methods are implemented; however, the most widely used is based on texture de-

scriptors and energy.   

4 Conclusions 

The Short-Time Fourier Transform provides a quick implementation for different ap-

proaches; acceptable results have been reported in terms of classification, derived from 

an extraction of spectrogram features obtained by applying STFT to the EEG signal. 

However, despite the results in the literature with this representation, there is a limited 

scope, considering the complexity of the characteristics, which presents different re-

search challenges, such as computational performance, accuracy in the classification, 

data dimension reduction, filtering of noisy signals, and others. Therefore, it is neces-

sary to propose improved methodologies that can meet these challenges in all phases 

of analysis. 

In some experiments, spectrograms have shown low resolution, which implies a 

changing performance; however, a high resolution requires more computational work 

and time. To solve this, a different purpose of feature extraction can be proposed, in 

addition to a feature selection method, because of the large dimensional data vector.  
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Due the information provided by spectrograms, it is possible to apply a classification 

based on thresholds. The literature on this methodology does not usually explain how 

the threshold is obtained, but another way to solve this, could be through the imple-

mentation of genetic algorithms.   

Most of the methodologies here presented analyze a single dataset as a seizure, a 

dream, alcoholism, imaginary movements, or others, but only one of these at a time; 

however, a different methodology could be proposed to classify more than one EEG 

signal. [20] classifies two datasets with competitive results in terms of accuracy, com-

pared with methodologies whose results come from one analysis to a single dataset.  
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